PENOPT

WWW.penopt.com

PENNON USER’S GUIDE

PENNON User’s Guide (Version 0.9)

Michal Kocvara Michael Stingl
www.penopt.com

June 11, 2008

Contents
1 Installation 2
1.1 Unpacking o 0 e e e e 2
1.2 Compilation 3
2 The problem 3
3 The algorithm 3
4 AwmPL interface S
4.1 Matrix variablesin MPL L 5
4.2 Preparing APLinputdatao 6
42.1 Thesdp-file. 6
4.3 Redundantconstraints. 8
44 Running BNNON o v it e e e e 8
4.5 Programoptions 8
5 MATLAB interface 12
5.1 Calling ENNONMfrom MATLAB oo 12
5.1.1 Userprovided functions 12
5.2 Thepen input structure in MATLAB 15
5.3 The ENNONMfunctioncall 19
6 Examples 21
6.1 NLP-SDPexample 21
6.1.1 AwvpLinterface 21
6.1.2 MaTLAB interface 22
6.2 Correlation matrix with the constrained conditonnemb 25
6.3 Truss topology optimization 28

Copyright(©) 2002—2008 Kocvara & Stingl PENOPT GbR

PENOPT

1 Installation

PENNON USER’S GUIDE

1.1 Unpacking

UNIX versions

The distribution is packed in filpennon.tar.gz . Put this file in an arbitrary directory.
After uncompressing the file fgennon.tar by commandyunzip pennon.tar.gz ,
the files are extracted by commatad -xvf pennon.tar

The distribution is packed in filpennon.zip . Put this file in an arbitrary directory and
extract the files byPKZIP.

In both cases, the directory PENNONO.9 containing the ¥atg files and subdirectories
will be created

LICENSE: file containing the ENNON license agreement;
bin: directory containing the files
pennon0.9(.exe)the binary executable with MPL interface,

nlpsdp.mod, a model file of a sample problem inveL format,
nipsdp.sdp an sdp file of a sample problem invL format,
nipsdp.nl, an nl-file created by APL from nlpsdp.mod ;

cond.mod a model file of a sample problem inveL format,
cond.sdp an sdp file of a sample problem inv&®L format,
cond.nl, an nl-file created by #pL from cond.mod ;

corr.mod, a model file of a sample problem inv®eL format,
corr.sdp, an sdp file of a sample problem inv#®L format,
corr.nl, an nl-file created by ApL from corr.mod ;

fmo.mod, a model file of a sample problem inv®L format,
fmo.dat, a data file of a sample problem inv&®L format,
fmo.sdp, an sdp file of a sample problem inv&®L format,
fmo.nl, an nl-file created by APL from fmo.mod ;

lib: directory containing the ®NNON libraries;
matlab: directory containing the files
pennonm.c the MATLAB interface file,
penoutm.c MATLAB version ofpenout.c
make_pennonm.m M-file containing MEX link command,
nlp.m, f.m, df.m, hf.m, g.m dg.m, hg.m M-files
defining a sample problem in PEN format.
nlpsdp, bfgs, cond directories containing examples from the last section
matlab\cond: directory containing the files for examptend
matlab\corr: directory containing the files for exampterr
matlab\fmo: directory containing the files for examgi@o
matlab\nlpsdp: directory containing the files for examphpsdp
matlab\truss: directory containing the files for exampieiss

WWW.penopt.com

PENOPT

WWW.penopt.com

PENNON USER’S GUIDE

1.2 Compilation
Requirements

For successful compilation and linkage, depending on thleatimg system and the pro-
gram to be created, the following software packages have todtalled:

UNIX versions

e MATLAB version 5.0 or later including ®x compiler package angcc compiler
package (MTLAB dynamic link librarypennonm. *)

e MATLAB version 5.0 or later including kX compiler package and IguAL C++
version 6.0 or later (MTLAB dynamic link librarypennonm. *)
To build a MATLAB dynamic link library pennonm. *
Start MATLAB, go to directorymatlab and invoke link command by
make_pennonm.

In case the user wants to use his/her owAPACK, BLAS or ATLAS implementations, the
M-file in directorymatlab has to be modified appropriately.

2 The problem

We solve optimization problems with nonlinear objectivéjeat to nonlinear inequality
and equality constraints and semidefinite bound conssraint

T

subjectto g;(z,Y) <0, i=1,...,m,
hi(z,Y) = 0, i=1,...,my (NLP-SDP)
Al 2V AT, i=1,...k.

Here
e = € R" is the vector variable

e Y| € SPr ..., Y, € SP* are the matrix variableg; symmetric matrices of dimen-
sionsp; X pi,..., Pk X P

e we denotey” = (Yq,...,Ys)
e f,g; andh; areC? functions fromR™ x SP* x ... x SP* toR

e)\, and); are the lower and upper bounds, respectively, on the eigewafY;,
i=1,...,k

3 The algorithm

To simplify the presentation of the algorithme only consider inequality constraintSor
the treatment of the equality constraints, see [2].

The algorithm is based on a choice of penalty/barrier famstp, : R — R that penalize
the inequality constraints an®lp : SP — SP penalizing the matrix inequalities. These

PENOPT

WWW.penopt.com

PENNON USER’S GUIDE

functions satisfy a number of properties (see [2]) that gntee that for any; > 0, i =
1,...,mg, we have

and
Z <0 < ®p(Z) =<0, ZeSP.

This means that, for any: > 0, problem (NLP-SDP) has the same solution as the following
“augmented” problem

min f(z,Y)

subjectto pipg(gi(x,Y)/pi) < i=1,...,my
Bp(\I —Y;) <0, i=1,...k (NLP-SDP,)
Op(Y; — NI) <0, i=1,...k

The Lagrangian of (NLP-SDF) can be viewed as a (generalized) augmented Lagrangian
of (NLP-SDP):

F(z,Y,u,U,U,p) = f(,Y) + Y uipiog(9i(z,Y)/ps)
=1
k k
+> (U, @pAI = Y)) + Y (Ui @p(Yi - ND)); (1)
i=1

=1

hereu € R™s andU,, U; are Lagrange multipliers associated with the standard laad t
matrix inequality constraints, respectively.

The algorithm combines ideas of the (exterior) penalty amteijor) barrier methods with
the Augmented Lagrangian method.

Algorithm 3.1 Let z!',Y! and uHQl,Ul be given. Letp! > 0,i = 1,...,m, and
P>0.Fork=1,2,...repeattill a stopping criterium is reached:

(i) Findz"+! andY*+! such that|V, F(zF+, YA+, ub, UF, T°, pb)|| < K

(i) ubt =ufol (g k), i=1, .. m,
UMt = D4@p(NI - YUY, i=1,...k
—k+1 —k .
U, _DA<I>p((Y; XU, i=1,....k
(i7) Pl <pkli=1,...,m,
prtl < pE .

The approximate unconstrained minimization in Step (igisgrmed by the Newton method
with line-search or by a variant of the Trust Region methad details, see [2]). The min-
imization is optionally stopped when either

—k
|V F(a* Y ok U T pF) s < a

or
IVoF (@4 YR b, U, T, 5| < o luf = ubel, (g: (") /o8

or

Vo F(zF+L, YR+ ok, UF T pF) -1 < o[Vo F(zF, YR+ oF UF T p%) || g

PENOPT

WWW.penopt.com

PENNON USER’S GUIDE

with optional parameter; by default,c = 1071,
The multipliers calculated in Step (ii) are restricted id@rto satisfy:

B g
7

p< o <o
;b

with some positiver, < 1; by default,x = 0.3. Similar estimates are satisfied for the
matrix multipliers.

The update of the penalty parametein Step (iii) is performed in two different ways:
Either the penalty vector is updated by some constant fdefeendent on the initial penalty
parameterr, or the penalty vector is updated only in case the progresheoimethod
becomes too slow. In either case, the penalty update isatbfp.,s (by defaulti0=%) is
reached.

Algorithm 3.1 is stopped when both of the inequalities holds

|f(z*,Y*) — F(a®, YE ok U* T, p)| |f(k, YF) — (a1
1+ [f(aF, Y F)] = 1+ |f (2%, Y F)]

wheree is by default10~" (parameteprecision). Optionally the user can choose a
stopping critrion based on the KKT error.

< €,

4 AMPL interface

AMPL is a comfortable modelling language for optimization pesbs. For a description
of AMPL we refer to [3] owww.ampl.com .

4.1 Matrix variables in AMPL

AMPL does not support matrix variables. However, the format ofpzablem (2) allows
us to use them:

e within an AmPL script (file <name>.mod), matrix variables are treated as vectors,
using the function svecS™ — R("+1)m/2 defined by

aip a2 ... Qim
a2 ... aom, T
svec . . = (an,a12,a22, cee »a1m7a2maamm)
sym Amm

Example:Assume we have a matrix variahle € S3

T1 T2 X4
X=\|z2 x3 x5
Ty T T

and a constraint

Tr(XA)=3 withA=

— o O
O = O
[en)

The matrix variable is treated as a vector
svedX) = (z1,x2,...,2¢)"
and the above constraint is equivalent to the following trarist:
T3+ 2x4 = 3.

The corresponding lines in tkmame>.mod file would be

PENOPT

WWW.penopt.com

4.2

PENNON USER’S GUIDE

var x{1..6}
subject to c: x[3]+2 *X[4] = S;

The order of the variables should be:

1. nonlinear matrix (the matrix or its elements are invouted nonlinear expres-
sion)

2. standard (real) variables

3. linear matrix variables

Example:Consider a problem with constraints

XPX =1
Y141 + 4242 =0

in variablesX € S3 andy € R2. The second constraint should be re-written using a
slack variableS € S

XPX =1
Y1 AL +y242 =S
S=0

In this example X is a nonlinear matrix variable, a standard real variable, ast
a linear matrix variable. So the definition of these variatitethe<name>.mod file
must follow the order:

var x{1..6} % vectorized upper triangle of X
var y{1..2}
var s{1..3} % vectorized upper triangle of S

data needed to identify the matrix variables (their numipersize) are included in a
file <name>.sdp that is read by theERNON.

Preparing AMPL input data

4.2.1 The sdp-file

File <name>.sdp includes the following data. The order of the data ispasory:

1.

Number of blocks
Give the total number of blocks in the block matrix varialslayk.

Number of nonlinear blocks
The number of blocks involved in nonlinear constraints

. Number of linear blocks

The number of blocks involved in linear constraints

Block sizes
k numbers, the sizes of the single blocks. If a block isxap matrix, its size i%.

Lower eigenvalue bounds
k numbers, the lower bounds on the eigenvalues in the singtk®numbersg,; in
problem (NLP-SDP))

PENOPT

WWW.penopt.com

PENNON USER’S GUIDE

6. Upper eigenvalue bounds

k numbers, the upper bounds on the eigenvalues in the sirag&s(numbers,; in
problem (NLP-SDP))

. Constraint types

k numbers identifying the treatment of the lower/upper bocostraints in the al-
gorithm

0 ...standardtreatment of the constraints (the constraints may be iifkaat
some iterations)

1 ...lower strict the lower bounds will always be strictly feasible during th
iretative process, will be treated by an inner barrier

2 ...upper strict same as above, now for the upper bounds
3 ...lower/upper strict both constraints will always remain strictly feasible
4 .. .slack the block is a slack variable

. non-zeroes per block

k numbers; if the block is dense, input the numbges- 1)p/2, wherep is the block
size; if the block is known to be sparse, give the actual nurobés nonzero ele-
ments (all other elements of this block will be ignored by tbee)

. honzero structure per blogkot required if all matrices are dense)

for each sparse block withnon-zero elements, givelines, one for each non-zero
element, where each line looks as follows

block_number row_index column_index
The numbering of the row/column indices is zero-based!
For dense block, there is no need to give these data. Henlitéhis Blocks are dense,
this part of the sdp-file will be void.

Below is an example of the sdp-file with three blocks, the &iret dense and the other two
sparse (diagonal).

HHHHH AR
sdp example 1 (PENNON 0.9)
HHHHHEH R T

#
#
#

H* H R H*H H H H*H H

H* HF

r. of sdp blocks

3

r. of non-lin. sdp blocks

0

Nr. of lin. sdp blocks

3
Block sizes
3 2 2

lower eigenvalue bounds

0. O -2.

PENOPT

PENNON USER’S GUIDE

upper eigenvalue bounds

H*H H

1.0E38 1.0E38 0.

Constraint types
O=standard, 1=lower strict, 2=upper strict,
3=lower/upper strict, 4=slack (not implemented yet)

HHHHHF

0O 0 O

nonzeroes per block

H*H H H

6 2 2

nonzero structure per block

H*H H H

W WwWN N
R OrFr O
m OPFr O

4.3 Redundant constraints

Important: AMPL may reorder the variables, which would lead to a collapsur treat-
ment of the matrix variables. To avoid the reordering, atialsles should be involved in
nonlinear constraints. If this is not the case, it is impotted add redundant nonlinear
constraints that include all variables. We recommend tocaadtraints of the type

red{i in 1..n}: X[i] * X[i]<=1000000;

This kind of redundant constraints will not change the spassructure of the Hessian and
will not influence the efficiency of the code.

4.4 Running PENNON
PENNON is called in the standard MpL style, i.e., either by a sequence like

model example.mod;

data example.dat;

option presolve 0;

options solver pennon;

options pennon_options ’'sdpfile=example.sdp outlev=2’ ; (for instance)
solve;

V VVVYVYV

within the AMPL environment or from the command line by

> ampl -P -obexample example.mod example.dat
> pennon example.nl sdpfile=example.sdp outlev=2

Itis necessary to surpres®\MPL preprocessing either by the commanabtion presolve 0;
within AMPL or using option -P when runningMeL from the command line.

Sample files are included in directadojn .

4.5 Program options

The options are summarized in Table 1.

WWW.penopt.com

PENOPT

Recommendations

PENNON USER’S GUIDE

e Whenever you know that the problem is convex, ceevex=1 .
e When you have problems with convergence of the algorithntptry

— decreasinit , e.g.,pinit=0.01 (This should be particulary helpful for
nonconvex problems, if an initial guess of the solution igilable).

increase (decreasaehit , e.g.,uinit=10000

switch to Trust Region algorithm hycmode=1

decreasalpha , e.g.,alpha=1e-3

change stopping criterion for inner loop by settimgtstopcrt=1

PENNON—-AMPL options

option meaning default
alpha stopping parameterx for the Newton/Trust region 1.0E-1
method in the inner loop
alphaupd update of 1.0e0
autoini automatic initialization of multipliers 1
0...off
1...nonlinear (nonconvex) mode
2 ...lp/gp mode
autoscale automatic scaling 0
0...on
1...off
cgtolmin minimum tolerance for the conjugate gradient algorithm 5.0e-2
cgtolup update of tolerance for the conjugate gradient algorithm 1.0e0
cmaxnzs tuning parameter for Hessian assembling in “nwtmode” -1
(put> 0 to switch it on)
convex convex problem? 0
0 ...generally nonconvex
1...convex
egltymode initialization of equality multipliers 3

0...two inequalities, symmetric

1...two inequalities, unsymmetric
2 ...augmented lagrangian
3...direct
4 .. .direct (only nonlinear equalities)
filerep output to file 0
0...no
1...yes
hessianmode check density of the Hessian 0
0...automatic
_ .) 1...dense.
ignoreinit ignore initial solutions 0

0...do not ignore
1...doignore

KKTscale equilibrate linear system matrix 0
0...no
1...yes
maxit maximum number of outer iterations 100
mu restriction facton: of multiplier update 0.5
nwtiters maximum number of iterations in the inner loop (Newtpn 100

or Trust region method)

9

WWW.penopt.com

PENOPT

PENNON USER’S GUIDE

PENNON-AMPL options(cont.)

nwtmode linear system solver 0
0...Cholesky method
1...conjugate gradient method
2...conjugate gradient method with approximate

Hessian calculation

1...conjugate gradient method to dual system
nwtstopcrit stopping criterium for the inner loop 0

0...|VL(=z** |2 < «
L. | VL)l2 < o fluf = ui ™|z
2. VL@)|l gr < o [VL{*)]| s

objno objective number in the AMPL .mod file 1
ordering ordering for MA57 4
outlev output level 1

0 ...silent mode
1...brief output

2 ...full output
penalty penalty function 0

0...logarithmic barrier + quadratic penalty
1...reciprocal barrier + quadratic penalty

penup penalty update 0.5
penupmode penalty update is performed: 0

0...adaptively

_ . 1...after each outer iteration

peps minimal penalty 1.0E-7
pinit initial penalty 1.0EO
pivtol pivot tolerance for MA27/57 1.0E-2
precision required final precision 1.0E-7
precKKT required final precision of the KKT conditions 1.0E-5
precond preconditioner type 0

0...no preconditioner

1...diagonal

2...L-BFGS

3...approximate inverse
4 . ..symmetric Gauss-Seidel

SDP file name of the SDP input file
timing timing destination 0
0...no
1...stdout
2 ...stderr
3...both
uinit initial multiplier scaling factor 1.0
uinitbox initial multiplier scaling factor for box constraints 1.0
uinitnc initial multiplier scaling factor for nonlinear constran 1.0
umin minimal multiplier 1.0E-10
usebarrier Use (mod.) barrier approach for boxes? 0
0...no
1...barrier

2. ..strict modified barrier

usesdpbarrier Use barrier approach for SDP variables? 0

£ 0...no

()

O 1...yes

o

(@)

=

(@)

o

% 10

version

wantsol

PENNON-AMPL options(cont.)

report PENNON version
0...yes

1...no
solution report without -AMPL. Sum of

.. do not write .sol file

.. write .sol file

.. print primal variable

.. print dual variable

.. do not print solution message

o A~DNEFO

11

PENOPT

WWW.penopt.com

PENNON USER’S GUIDE

5 MATLAB interface

5.1 Calling PENNONM from MATLAB
5.1.1 User provided functions

The user is required to provide sixAWMLAB functions. The names of the functions can be
chosen by the user; here we use the following names:

f ...evaluates the objective function

df ...evaluates the gradient of objective function
hf ...evaluates the Hessian of objective function
g ...evaluates the constraints

dg ...evaluates the gradient of constraints

hg ...evaluates the Hessian of constraints

Similarly as in the AMPL interface,matrix variables are treated as vectors using the
function svec S” — R(m+1)m/2 defined by

aiz a2 ... QGim
a2 ... a2m, T
svec . E = (a117a127a227'~~>a1m7a2m»amm)
sym Amm

Important: The order of the variables should be:
1. standard (real) variables;
2. matrix variables.

The parametenvar contains the number @l variables. For instance, if we have two
matrix mariables, one dense of size 2 (i.e. 3 unknowns) ardparse with 7 nonzeros (in
the triangular part), and 4 standard (real) variables, tiemr = 3 + 7+ 4 = 14.

The specification of the user-defined functions will be eix@d using the sample problem
(NLP-SDP2).

function [fx] = f(x)

h =[22; -1.1; 1.9; -1.1; 2.1]./6;
x=reshape(x,length(x),[]);

fx = (x-h) *(x-h);

Arguments:

X vector of lengthn storing current iterate;; (input)

fx variable storingf (z;:) (output)
Description:
e Computef (z;;) and store it irfx .
Note:

e Vectorx should not be modified by the user.

12

PENOPT

function [nnz,ind,val] = df(x)

h =[22; -1.1; 1.9; -1.1; 2.1]./6;
x=reshape(x,length(x),[]);

nnz = length(x);

PENNON USER’S GUIDE

ind = 1:nnz;
val = 2. *(x-h);
Arguments:
X vector of lengthn storing current iterate;; (input)
nnz variable storing number of non-zerosGff (output)
ind nnz X 1 matrix storing non-zero structure & f (output)
val nnz X 1 matrix storing non-zero values & f (output)
Description:

1. ComputeV f(z;;);

2. Assign non-zero structure tod and the corresponding valuesual .
Note:

e Vectorx should not be modified by the user;

e Non-zero indices should be zero based;

e Non-zero structure should be constant.

function [nnz,row, col, val] = hf(x)
nnz = length(x);

row = 1l:nnz,
col = 1:nnz;
val = 2. xones(nnz);
Arguments:
X vector of lengthn storing current iterate;; (input)
nnz variable storing number of non-zerosf f (output)
row nnz x 1 matrix non-zero row indices o¥2 f (output)
col nnz x 1 matrixnnz non-zero column indices &72 f (output)
val nnz X 1 matrixnnz storing non-zero values &2 f (output)
Description:

1. ComputeV?f(z;t);

2. Assign non-zero structure tow andcol and the corresponding valuesval .
Note:

e \ectorx should not be modified by the user;
Non-zero indices should be zero based,;

Non-zero structure should be constant;

Values should be assigned to lower triangular part o2 f(z;;) only.

13

WWW.penopt.com

PENOPT

WWW.penopt.com

[9]
function [gx] = g(i, X)
gx = x(1)+x(3)+x(5)-1.0;

Arguments:
i variable storing constraint number (input)
X vector of lengthn storing current iterate;; (input)
gx variable storingf(z;;) (output)
Description: Computeg;(x;;) and store it irgx.
Note:
e Vectorx should not be modified by the user;

e Linear constraints should be specifigitier nonlinear constraints.

function [nnz,ind, val] = dg(i, x)

nnz=3;
ind = [1;3;5];
val = [1;1;1];
Arguments:
i variable storing constraint number (input)
X vector of lengthn storing current iterate;; (input)
nnz variable storing number of non-zerosgf; (output)
ind nnz X 1 matrix storing non-zero structure ®g; (output)
val nnz X 1 matrix storing non-zero values &fg; (output)
Description:

1. ComputeVg;(xit);

2. Assign non-zero structure tod and the corresponding valuesual .

Note:

e \ectorx should not be modified by the user;

Linear constraints should be specifigftier nonlinear constraints;

Non-zero indices should be zero based;

Non-zero structure should be constant.

function [nnz, row, col, val] = hgs_bfgs(i, x)

nnz = 0;
row = O;
col = O;
val = 0;

14

PENNON USER’S GUIDE

PENOPT

WWW.penopt.com

PENNON USER’S GUIDE

Arguments:

i variable storing constraint number (input)

X vector of lengthn storing current iterate;; (input)
nnz variable storing number of non-zerosGtg; (output)
row nnz x 1 matrix non-zero row indices d¥2g; (output)
col nnz x 1 matrix non-zero column indices &2g; (output)
val nnz x 1 matrix storing non-zero values &2g; (output)
Description:

1. ComputeV3g;(zi);
2. Assign non-zero structure tow andcol and the corresponding valuesval .
Note:

Vectorx should not be modified by the user;

Linear constraints should be specifigftier nonlinear constraints;

Non-zero indices should be zero based;

Non-zero structure should be constant;

Values should be assigned to lower triangular part o2 £ (z;;) only.

5.2 Thepen input structure in MATLAB

The user must create aMlLAB structure array with fields described below in Table 2. The
structure also specifies the names of the user defined fasctio

Remark 5.1 Arrayslbv andubv define lower and upper bounds on variables; in case of
matrix variables, these are bounds on the elements of th&cemtArraydbmv andubmv,

on the other hand, define spectral bounds on the matricedyaends on the smallest and
largest eigenvalues.

Remark 5.2 When using the (automatic removal of) slack variables (amaype) it is
important to follow these points:

e the slack variables should be tha last ones in the list oabtes

¢ the equality constraint that defines the slack variable lshioei formulated in such a
way, that the slack variable has a positive sign

¢ the constraints on the slack variables are always of the $ype)
Example:Consider a problem in variablesz € R, X € SP with constraints
X =zl (2)
X =2yl 3)

To transorm the constraints into our standard structure @e=l rio introduce two slack
matrix variablesP and@, and replace (2) and (3) by

X-2I-P=0 @)
X—-yl-Q=0 ()
P=0
Q=0

If we want to use the automatic slack removal (optiotype=4), we have to

15

PENOPT

WWW.penopt.com

Table 2: Thepen structure

PENNON USER’S GUIDE

name description type length
nvars number of variables integer| number
nconstr number of constraints (including linear) integer| number
nlin number of linear constraints integer| number
nsdp number of matrix variables integer| number
blks row dimensions of matrix variables integer nsdp
nnz _gradient maximal number of non-zero entries in user speéateger| number
ified gradients
nnz _hessian maximal number of non-zero entries in user speéateger| number
ified Hessians
[bv lower bounds on variables double| nvars
ubv upper bounds on variables double| nvars
Ibc lower bounds on constraints double | nconstr
ubc upper bounds on constraints double | nconstr
Ibmv lower bounds on matrix variables (min. eigenvaldouble nsdp
ues)
ubmv upper bounds on matrix variables (max. eigenvatiouble nsdp
ues)
mtype type of matrix constraints double nsdp
0 ...standard (constraints may be infeasihle
at some iterations)
1 ...lower strict (the lower bounds will
always be strictly feasible during the
iterative process)
2 ...upper strict (same as above, now for the
upper bounds)
3 ...lower/upper strict (both constraints will
always remain strictly feasible)
4 ...slack (the block is a slack variable)
mnzs non-zeros per block; if the block is dense, inpuinteger nsdp
the numbelp + 1)p/2, wherep is the block size;
if the block is known to be sparse, give the actual
number of its nonzero elements (all other elements
of this block will be ignored by the code)
mrow element row indices per block (not required if alinteger varies
matrices are dense); for each sparse block with
non-zero elements, givenumbers of row indices
of the elementsthe numbers are zero-based
mcol element column indices per block (not required iinteger varies
all matrices are dense); for each sparse block with
s non-zero elements, give numbers of column
indices of the elementghe numbers are zero-
based
xinit initial guess for the solution double | nvars
my.f actual name of the filem char
my._f _gradient actual name of the fildf.m char
my.f _hessian actual name of the filaf.m char
my.g actual name of the filg.m char
my_g_gradient actual name of the fildg.m char
my_g_hessian actual name of the filag.m char
ioptions integer valued options integer 18
doptions real valued options , . double 14

PENOPT

e order the matrix variables as, P, Q or X, @, P, inlbmv, ubmv, mtype |, etc. If
only of of the mariced, @ is to be removed, it has to be the last one. For instance, if
only @ is to be removed as a slack variable, the order must hB, @ and the array

WWW.penopt.com

mtype will be

mtype = [0, O, 4]

PENNON USER’S GUIDE

e constraints (4) and (5) must be reformulated such thahd@ have positive signs,

i.e.,
—X+z2[+P=0 (6)
—X+yI+Q=0 (7)
P>0
Q=0

e constraint (7) must further be reformulated such that theks]) is positive definite
(not negative definite as above). The final version of the ttaimgs is then

—X+2z2I+P=0
X—yl+Q=0

P=0
Q=0

Remark 5.3 For a dense block, there is no need to give sataw,mcol . Hence if all
the blocks are dense, arraysdp,mrow,mcol

can be omitted.

For the sample problem (NLP1) the structure can be as follows

Infinity = 1.0E38;
n =2>5;
pen.nvars = n;
pen.nlin = 1;
pen.nconstr = 1;

pen.nsdp = 1;

pen.blks = [3];

pen.nnz_gradient = n;
pen.nnz_hessian = n;

pen.lov = -Infinity. *ones(n,1);
pen.ubv = Infinity. *ones(n,1);
pen.lbc = [0];

pen.ubc = [O];

pen.lomv = [O];

pen.ubmv = [Infinity];

pen.mtype = [0];

pen.mnzs = [5];

pen.mrow = [0;0;1;1;2];

pen.mcol = [0;1;1;2;2];
pen.xinit=[1;0;1;0;1];

pen.my f = 'f;

pen.my_f gradient = ’'df’;

pen.my_f _hessian = ’hf’

pen.my_g = g}

17

PENOPT

WWW.penopt.com

pen.my_g_gradient
pen.my_g_hessian

)dgy;
,hg,;

PENNON USER’S GUIDE

pen.ioptions = [100 100 2 0 001 001000 -1 0 1 O];

pen.doptions

[1.0E-2 1.0EO 1.0E-O 1.0E-2 5.0E-1 5.0E-1..

1.0E-6 1.0E-12 1.0e-7 0.05 1.0 1.0 1.0];

andhg.m in directorymatlab .

A sample implementation is included in the filg.m , f.m , df.m , hf.m , g.m, dg.m

IOPTIONS name/value | meaning default
ioptions(1) maxit maximum numbers of outer iterations 100
ioptions(2) nwtiters maximum number of iterations in inner loop 100
ioptions(3) outlev output level 2
0 no output
1 only options are displayed
2 brief output
3 full output
ioptions(4) hessianmode check density of hessian 0
0 automatic
1 dense
ioptions(5) autoscale | automatic scaling 0
0 on
1 off
ioptions(6) convex convex problem ? 0
0 no
1 yes
ioptions(7) egltymode | the way to treat equality constraints 3
0 as two inequalities, unsymmetric initialization
1 as two inequalities, symmetric initialization
2 handled by standard augmented lagrangian
3 direct handling (all equalities)
ioptions(8) ignoreinit | ignore initial solutions ? 0
0 do not ignore
1 ignore
ioptions(9) cholmode | cholesky system mode 0
0 Solve directly
1 Solve augmented system
2 Split into two systems
ioptions(10) nwtstopcrit | stopping criterion for the inner loop 2
0 IVL(*)|z < o
1 VL)2 < o fluf — w2
2 [IVL(z**Y)]lg-1 < - [[VL(2") | g
ioptions(11) penalty penalty function 0
0 logarithmic barrier + quadratic penalty
1 reciprocal barrier + quadratic penalty
ioptions(12) nwtmode | mode of solving the Newton system 0
0 cholesky (standard)
1 cg (with exact hessian)
2 cg (with appr. hessian)
3 cg (with user provided Hessian-vector routine)

18

PENOPT

PENNON USER’S GUIDE

ioptions(13) prec preconditioner for the cg method 0
0 no precond
1 diagonal precond
2 bfgs precond
3 appr. inverse precond
4 sgs precond
ioptions(14) cmaxnzs | tuning parameter for Hessian assembling in nwtl
mode 1-3
-1 off
>0 on
ioptions(15) autoini | automatic initialization of multipliers 0
0 off
1 nonlinear (nonconvex) mode
2 Ip/qp mode
ioptions(16) penup | penalty parameter update is performed 1
0 adaptively
1 after each outer iteration
ioptions(17) usebarrier| box constraint mode 0
0 no special treatment
1 use (strict) barrier function
2 use (strict) modified barrier function
ioptions(18) dercheck | derivative check 0
0 no derivative check
1 check gradients
2 check hessians
DOPTIONS name/value| meaning default
doptions(1) precision | required final precision 1.0e-7
doptions(2) uinit initial multilplier scaling factor 1.0
doptions(3) pinit initial penalty 1.0
doptions(4) alpha stopping parameter alpha for the Newton/Trust fre- 0.01
gion method in the inner loop
doptions(5) mu restriction factor of multiplier update 0.5
doptions(6) penup penalty update 0.1
doptions(7) peps minimal penalty 1.0e-8
doptions(8) umin minimal multiplier 1.0e-12
doptions(9) preckkt | precision of the KKT conditions 1.0e-1
doptions(10) cgtolmin | minimum tolerance of the conjugate gradient algo-5.0e-2
rithm
doptions(11) cgtolup | update of tolerance of the conjugate gradient algo-1.0e0
rithm
doptions(12) uinitbox | initial multiplier box constraints 1.0e0
doptions(13) uinitnc initial multiplier nonlinear constraints 1.0e0
doptions(14) uinitsdp | initial multiplier sdp constraints 1.0e0

5.3 ThePeENNONM function call

In MATLAB, PENNONM is called with the following arguments:
[f,x,u,status,iresults,dresults] = pennonm(pen);

where

pen. .. the input structure described in the next section

19

WWW.penopt.com

PENOPT

f ... the value of the objective function at the computed optimum

WWW.penopt.com

X ... the value of the dual variable at the computed optimum

u ... the value of the primal variable at the computed optimum

status. . . exit information (see below)

iresults. . . a 4x1 matrix with elements as described below

dresults. .. a 5x1 matrix with elements as described below

PENNON USER’S GUIDE

IRESULTS meaning

iresults(1) number of outer iterations

iresults(2) number of inner iterations

iresults(3) number of linesearch steps

iresults(4) ellapsed time in seconds

DRESULTS meaning

dresults(1) primal objective

dresults(2) relative precision at ot

dresults(3) feasibility atzopt

dresults(4) complementary slacknessaap,;

dresults(5) gradient of augmented lagrangianap

STATUS meaning

status = 0 converged: optimal solution

status = 1 converged: suboptimal solution (gradient large)

status = 2 converged: solution primal infeasible

status = 3 aborted: no progress, problem may be primal infeasible
status = 4 aborted: primal unbounded or initial multipliers too small
status = 5 aborted: iteration limit exceeded

status = 6 aborted: line search failure

status = 7 aborted: aborted: cholesky solver failed

status = 8 aborted: wrong parameters

status = 9 aborted: resource limit

status = 10 aborted: internal error, please contact PENOPT Gbr (co@geenopt.com)
status = 11 aborted: error in user's memory allocation

status = 12 aborted: error in user supplied routines

20

PENOPT

WWW.penopt.com

6 Examples
6.1 NLP-SDP example

Consider the following simple NLP-SDP example in matrixighte X < S3:

3
H}}nigl(xij — Hy;)?
subject to
TrX =1
X >0

1 2.2 —-1.1 0
H = G —-1.1 1.9 —-1.15
0 —-1.15 2.1

where

We will treat the matrix variable as a sparse (tri-diagonadyrix.

6.1.1 AMPL interface

nlpsdp.mod

var x{1..5} default O;
param h{1..5}

minimize Obj: sum{i in 1..5} (X[i]-h[i])"2;
subject to

11:

X[1]+x[3]+x[5] = 6;

data;

param h:=
1222 -11319 4 -115 5 2.1;

nipsdp.sdp

Nr. of sdp blocks

1

Nr. of non-lin. sdp blocks
0

Nr. of lin. sdp blocks
1

Block sizes
3

lower eigenvalue bounds

0.

upper eigenvalue bounds
1.0E38

Constraint types
0

nonzeroes per block
5

nonzero structure per block
1 0O O

21

PENNON USER’S GUIDE

(8)

PENOPT

PENNON USER’S GUIDE

1 O 1
1 1 1
1 1 2
1 2 2

6.1.2 MATLAB interface

function [fx] = f(X)

h =[2.2; -1.1; 1.9; -1.1; 2.1]./6;
x=reshape(x,length(x),[]);

fx = (x-h) *(x-h);

function [nnz,ind,val] = df(x)

h =[2.2; -1.1; 1.9; -1.1; 2.1]./6;
x=reshape(x,length(x),[]);

nnz = length(x);

ind = 1:nnz;

val = 2. *(x-h);

function [nnz,row, col, val] = hf(x)
nnz = length(x);

row = 1:nnz;
col = 1:nnz;
val = 2. *ones(nnz);

function [gx] = g(i, X)
gx = Xx(1)+x(3)+x(5)-1.0;

function [nnz,ind, val] = dg(i, X)

nnz=3;
ind = [1;3;5];
val = [1;1;1];

function [nnz, row, col, val] = hgs_bfgs(i, x)

22

WWW.penopt.com

PENOPT

WWW.penopt.com

n =5;
Infinity = 1.0E38;
pen.nvars = n;

pen.nlin = 1;

pen.nconstr = 1;

pen.nsdp = 1;

pen.blks = [3];

pen.nnz_gradient = n;
pen.nnz_hessian = n;

pen.lbv = -Infinity. *ones(n,1);
pen.ubv = Infinity. *ones(n,1);
pen.lbc = [0];

pen.ubc = [0];

pen.lbmv = [0];

pen.ubmv = [Infinity];

pen.mtype = [O];

pen.mnzs = [5];
pen.mrow = [0;0;1;1;2];
pen.mcol = [0;1;1;2;2];

pen.xinit=[1;0;1;0;1];
pen.my f = ’f’
pen.my_f gradient = ’'df;

pen.my_f hessian 'hf’;
pen.my g = 'g’;
pen.my_g_gradient = 'dg’;

pen.my_g_hessian = ’hg’;

pen.ioptions = [100 100 2 0001 001 000 -1 0 1 O

pen.doptions = [1.0E-2 1.0EO 1.0E-0 1.0E-2 5.0E-1 5.0E-1..
1.0E-6 1.0E-12 1.0e-7 0.05 1.0 1.0 1.0];

[wl,w2]=pennonm(pen)
Below is an output of the command

>> nlpsdp

Variables: 5

NL-constraints: 0

L-constraints: 1

Number of bounds: 0 (l:0 u:0)

Dense Problem !
Number of nonlinear constraints (ineq): O
Number of linear constraints (ineq): 2

Number of Variables 5
- bounded below
- bounded above
Number of Matrix variables 1
- degrees of freedom 5
- bounded below 1
- bounded above 0
Number of Nonlinear Equalities 0
Number of Nonlinear Inequalities 0

23

PENNON USER’S GUIDE

PENOPT

Number of Linear Equalities 1
Number of Linear Inequalities 0

PENNON USER’S GUIDE

kkkkkkkkkkkkkkkkkkkkkkkhkkkkkkhkhkkkkkkhkkkkkkhkkkx

PENNON 0.9

kkkkkkkkkkkkkkkhkhkkkkkkkkkkkhkhkhkkkkkkkkkkkhkhkkkx

Max./Min. Lin-Mult.: 1.000000 / 1.000000
maximal penalty: 1.000000, penalty update: 0.562341

*%% *% *% *% * *% *% *% *% *%%

* it | obj | (UGKX) | [IdF]l | feas | pmin | Nwt | Fact |

kkkkkkkkkkkkkhkkkkkkkhkkkhkkhkkkhkkhkkkhkkkhkkhkkkkkhkkhkkkkkkkkkk kkkkkkkkkhkkkkkkkkkkkkkkhkkkkkkk
| 0] 5.88000e+000 | 4.7e+000 | 1.2e+001 | 3.0e+000 | 1.0e+000 | 0 | 0
| 1| 4.57213e-002 | 2.8e+000 | 1.7e-004 | 1.7e-001 | 1.0e+000 | 3| 3
| 2| 3.19019e-002 | 6.0e-001 | 7.3e-003 | 2.1e-002 | 5.0e-001 | 1| 1
| 3| 1.64866e-002 | 1.1e-001 | 1.8e-003 | 1.0e-002 | 2.5e-001 | 1| 1
| 4] 1.36399e-002 | 1.9e-002 | 1.2e-004 | 1.8e-003 | 1.3e-001 | 1| 1
| 5| 1.33582e-002 | 2.5e-003 | 8.1e-007 | 1.8e-004 | 6.3e-002 | 1| 1
| 6] 1.33345e-002 | 2.1e-004 | 4.8e-010 | 8.9e-006 | 3.1e-002 | 1| 1
| 7] 1.33334e-002 | 1.3e-005 | 5.9e-014 | 2.2e-007 | 1.6e-002 | 1| 1
Objective 1.3333362749702404e-002
Relative Precision 1.2950484187658137E-005
Gradient Augm. Lagrangian 5.9044538720747749E-014
Complementary Slackness 1.2950484187658137E-005
Feasibility 2.2061216231605840E-007
Feasibility (LMI) 0.0000000000000000E+000
Outer lterations 7
Inner lterations 9
Linesearch steps 9
Start time Sun Jan 06 19:05:23 2008
End time Sun Jan 06 19:05:24 2008
Process time Oh O mn 1 sec
kkkkkkkkkkhkkkkhkhkkkhhkhkkkhhkhkkkkhkhkkkhkhkkkkhkhkkkkkhkik kkkkkkkkkkhkkkkhhkkkkhkhkkkkkk
wl =

0.0133
w2 =

2.1333 -1.1000 1.8333 -1.1000 2.0333
>>

The optimal matrix is thus

2.1333 —1.1000 0.0
X =[-1.1000 1.8333 —1.1000
0.0 —1.1000 2.0333

The corresponding MrLAB files for this example are included in the directamgtlab/nlpsdp

24

WWW.penopt.com

PENOPT

WWW.penopt.com

PENNON USER’S GUIDE

6.2 Correlation matrix with the constrained condition number

We consider the problem of finding a nearest correlationimatr

n
min gzjl(x,»j — Hy;)? 9)
subject to
Xi=1 i=1,...,n
X>0

This problem is based on a practical application; see [4sufree that the original correla-
tion matrix is

1 —-044 —-020 0.81 —0.46

—0.44 1 087 —-0.38 0.81

Hyig = | —0.20 0.87 1 —-0.17 0.6
0.81 -0.38 —-0.17 1 —0.37

—0.46 0.81 0.66 —0.37 1

When we solve problem (9) with := H.,, the solution will be, as expected, the original
matrix Hoyig.

We now add a new asset class, that means, we add one row amanctauhe original
matrix. The new data is based on a different frequency thaotiginal part of the matrix,
which means that the new matrix is no longer positive definite

1 -044 -020 081 —-046 —-0.05
—0.44 1 0.87 —-0.38 081 —0.58
o — -0.20 .87 1 —-0.17 0.65 —0.56
t— 1 081 -038 -0.17 1 —-0.37 —-0.15
—0.46 0.81 0.66 —0.37 1 —0.08

—-0.05 —-0.58 —-0.56 —0.15 0.08 1

Let us find the nearest correlation matrix,; by solving (9). We obtain the following
result (for the presentation of results, we will use matlatpat in short precision):

X =
1.0000 -0.4420 -0.2000 0.8096 -0.4585 -0.0513
-0.4420 1.0000 0.8704 -0.3714 0.7798 -0.5549
-0.2000 0.8704 1.0000 -0.1699 0.6497 -0.5597
0.8096 -0.3714 -0.1699 1.0000 -0.3766 -0.1445
-0.4585 0.7798 0.6497 -0.3766 1.0000 0.0608
-0.0513 -0.5549 -0.5597 -0.1445 0.0608 1.0000

with eigenvalues

eigen =
0.0000 0.1163 0.2120 0.7827 1.7132 3.1757

As we can see, one eigenvalue of the nearest correlationxnmizero. This is highly
undesirable from the application point of view. To avoidsthwe can add lower (and upper)
bounds on the matrix variable, i.e., constraints

M <X <.

This would be reflected in the following lines in tidpsdp.m matlab code from page
22:

25

PENOPT

pen.lbmv = lambda_min;
pen.ubmv = lambda_max;

PENNON USER’S GUIDE

However, the application requires a more general approaemwe only want to bound the
condition number of the nearest correlation matrix. This loa guaranteed by introducing
a pair of new variableg, z € R and adding the following set of constraints to (9):

X > 2l (10)
X <yl (11)
y < Kz (12)

wherex is the required condition number. Notice that the above ttaimés do not fit into
our required NLP-SDP problem structure (see page 3). Tmelatd way to transorm the
condition constraints into our standard structure is toothice two new (slack) matrix
variables, sayP and@, and replace (10) and (11) by

X—2I-P=0
X—-yl—-Q=0
P=0
Q=0

We may not like the additional matrix variables, as they@ase the problem size consid-
erably. There are two ways how avoid using them.

First, we may use the automatic slack removal optiotype = 4). The above con-
straints then should be reformulated as

—X4+2I+P=0
X—-yl+Q=0
P>0

Q=0

(see Remark 5.2 on page 15). All data and m-files are prepathdhe matrices present
in the formulation; then we set

pen.mtype = [0; 4; 4]

end RFENNON will automatically remove the slacks from the formulatiauch that the
actual calculations will only use variablgsz and X. The corersponding m-files can be
found in the directorynatlab/cond _slack .

Second, we can rewrite constraints (10)—(11) as

I=<X =<kl (13)
assuming thay = xz and using the transormation of the varialAle
2X=X.

Now, of course, we also have to change the other constraidttha objective function; the
new problem of finding the nearest correlation matrix withcaidned condition number
reads as follows:

Hllll Z (Z)?ij — H,’j)Q (14)
22X =1

= subject to

3 2Xu=1, i=1,...,n

g— I=<X <kl

c

(@)

Q

% 26

PENOPT

WWW.penopt.com

PENNON USER’S GUIDE

The new problem now has the NLP-SDP problem structure rediiy PENNLP (see page
3). When solving the problem by PENNLP, with= 10, we get the solution after 11 outer
and 37 inner iterations. The solution is

z = 0.2866
and

Xtilde =
3.4886 -1.3170 -0.7780 2.4761 -1.4902 -0.2456
-1.3170 3.4886 2.4175 -1.1005 2.0926 -1.4715
-0.7780 2.4175 3.4886 -0.5392 1.9269 -1.7145
24761 -1.1005 -0.5392 3.4886 -1.3455 -0.4515
-1.4902 2.0926 1.9269 -1.3455 3.4886 -0.2008
-0.2456 -1.4715 -1.7145 -0.4515 -0.2008 3.4886

After the back substitutiotX = %X’ , we get the nearest correlation matrix

X =
1.0000 -0.3775 -0.2230 0.7098 -0.4272 -0.0704
-0.3775 1.0000 0.6930 -0.3155 0.5998 -0.4218
-0.2230 0.6930 1.0000 -0.1546 0.5523 -0.4914
0.7098 -0.3155 -0.1546 1.0000 -0.3857 -0.1294
-0.4272 0.5998 0.5523 -0.3857 1.0000 -0.0576
-0.0704 -0.4218 -0.4914 -0.1294 -0.0576 1.0000

with eigenvalues

eigenvals =
0.2866 0.2866 0.2867 0.6717 1.6019 2.8664

and the condition number equal to 10.
Below we show the corresponding AMPL filesnd.mod andcond.sdp . These can
be found in directonpin .

param h{1..21};

set indi within {1..21};
var x{1..21} default O;
var z ;

minimize Obj: sum{i in 1..21} (z * X[i]-h[i])"2;
subject to
b{i in 1..21}: X]i] * X[i]<=10000;
bj: Zz *7z<=10000;
11{i in indi}:
zxX[i] = 1;

data;
param h:=
1 100 2 -044 3 100 4 -020 5 087 6 100 7 0.81
8 -0.38 9 -0.17 10 1.00 11 -0.46 12 0.81 13 0.65 14 -0.37
15 1.00 16 -0.05 17 -0.58 18 -0.56 19 -0.15 20 0.08 21 1.00;
set indi:=
1 3 6 10 15 21;

27

PENOPT

Nr. of sdp blocks

1

Nr. of non-lin. sdp blocks
1

Nr. of lin. sdp blocks
0

Block sizes
6

lower eigenvalue bounds
1.0

upper eigenvalue bounds
10.

Constraint types
0

nonzeroes per block
21

nonzero structure per block

PENNON USER’S GUIDE

Important: As mentioned earlier, AMPL may reorder the variables. Ithisstimportant
to add redundant nonlinear constraints that include albbées. In this case, we added

constraints

b{i in 1..21}: X]i]
bj: z *7<=10000;

*x[]<=10000;

The corresponding MrLAB files for this example are included in the directamgtlab/cond

6.3 Truss topology optimization

The single-load truss topology optimization problem cafdomulated as a linear semidef-

inite program (see, e.g., [1]):

m
i 2t &
=1
subject to
m
Z tidi f =0
=1 7 -
f Y
t,’ZO, i=1,...,n
Here A; € S, ¢ = 1,...,m are given symmetric matrices arfde R", v € R given
data. To cast the problem into our canonical NLP-SDP formintreduce a slack variable
S € Snti:
i 2t &8
=1
subject to

WWW.penopt.com

PENOPT

WWW.penopt.com

PENNON USER’S GUIDE

Below we will present part of the WrLAB interface. Again, the complete m-files can be
found in directorymatlab/truss . We have two variables in the problem—the matrix
S (only involved in linear expressions) and the vectorin MATLAB interface, vector
variables should preceede linear matrix variables. We ithtusduce a joint variable: €
R+ (n+1)(n+2)/2.

2 = (T, svec(S)T).
The relevant part (after the definition of the data matrioéshe filetruss.m reads as

nnn = (n1+2) =*(nl1+1)/2; % nl is the size of matrices A _i
Infinity = 1.0E38;

pen.nvars = m + nnn;

pen.nlin = O;

pen.nconstr = nnn;

pen.nsdp = 1;
pen.blks = [n1+1];
pen.lbmv = [0];

pen.ubmv = [Infinity];
pen.mtype = [O];

pen.nnz_gradient = m+1;

pen.nnz_hessian = m;

pen.lov = [0.0. * ones(m,1);-Infinity *ones(nnn,1)];
pen.ubv = [Infinity * ones(m,1);Infinity *ones(nnn,1)];
pen.lbc = [zeros((n1+1) *n1/2,1);ff;gammal;

pen.ubc = [zeros((n1+1) *n1/2,1);ff;gammay;
pen.xinit=[0.1. * ones(m,1);zeros(nnn,1)];

pen.my_f = ’f truss’;

pen.my_f gradient = ’df_truss’;

pen.my_f hessian = ’'hf_truss’;

pen.my_g = ’'g_truss’

pen.my_g_gradient = ’'dg_truss’;

pen.my_g_hessian = ’hg_truss’;

pen.ioptions = [100 100 2 0001 001 000 -1 0 1 2;

pen.doptions = [1.0E-2 1.0E0 1.0E-0 1.0E-2 5.0E-1 5.0E-1..
1.0E-6 1.0E-12 1.0e-7 0.05 1.0 1.0 1.0];

[wl,w2] = pennonm(pen);

We further show the files defining the objective function aadstraints:

function [fx] = f_truss(x)
global par

m=par.m;

fx = sum(x(1:m));

function [gx] = g_truss(i, x)
global par A
m=par.m; n=par.n; nl=par.nl,
if i < (n1+1) *nl/2
gx = 0;
for j=1:m
gx = gx - A{j}(i+1) *X(1);
end

29

PENOPT

WWW.penopt.com

PENNON USER’S GUIDE

gx = gx + X(i+1+m);
else

gx = x(i+1+m);
end
References

[1] W. Achtziger and M. K@vara. Structural Topology Optimization with Eigenvalues
SIAM J. Optimizatiori8(4): 1129-1164, 2007.

[2] M. Kocvara and M. Stingl. PENNON—a code for convex nonlinear anudefinite
programming.Optimization Methods and Softwa®&(3):317-333, 2003.

[3] R. Fourer, D. M. Gay and B. W. Kernighan. AMPL—a modelliranguage for
mathematical programmingcientific Press1993.

[4] R. Werner and K. Sadittle. Calibration or corellation matrices—SDP or not SDP.
Submitted.

30

